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mixtures of distributions.
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1. INTRODUCTION

Multivariate data became quite common in statistics and its applications in last fifty
years. The classical statistical theory for multivariate random vectors is based on the
assumption of normality (or a mixture of normal distributions) for which the infer-
ence is well developed. This requirement is, however, too strong; the nonparametric
approach is desirable and has been studied intensively in last thirty years.

The median or generally the quantiles are very popular in the statistical infer-
ence and data analysis of univariate random variables. For the multivariate random
vectors, however, the lack of natural ranking means that there is no direct generalisa-
tion of the univariate median to the vector case – unlike for the mean. The problem
of multivariate quantiles became still very popular in mathematical statistics and
recently there have appeared many competitive approaches to that problem. One
of the most popular is the data depth. Data depth is a tool for ordering the data
according to some measure of “centrality”, called the depth. There are many well
known depth functions which have been intensively studied in last two decades. The
classical data depth is the halfspace depth introduced in [8]. Other popular depth is
the simplicial depth, [3]. Zuo and Serfling [10] and Mizera [6] study depth from a
general point of view. The recent development in the data depth may be found in
[4].

In this paper we discuss an alternative definition of the data depth; in particular,
we generalise the concept of halfspace depth. The halfspace depth and its funda-
mental properties are briefly recalled in Section 2. Some features of halfspace depth
may be considered undesirable in different situations, as we illustrate throughout
the paper. Therefore, the generalisation of the depth function is introduced in Sec-
tion 3 and some basic properties of this data depth are discussed in Section 4. In
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Section 5, we prove the strong consistency of our depth function. In Section 6, three
illustrative examples with discussion are provided.

2. HALFSPACE DEPTH

One of the most popular depth functions is the halfspace depth, defined by Tukey [8].
Donoho and Gasko [2] have studied its breakdown properties. The computational
aspect may be found, e. g., in [7], Matoušek [5] has proposed fast algorithm for com-
puting the deepest point (point with maximal halfspace depth) of random sample.
See also [11] for broad discussion on features of data depth and, in particular, of the
halfspace depth.

Definition 2.1. Let P be a probability measure on Rp. The halfspace depth of a
point x is defined as

HD(x) = inf
u,‖u‖=1

P
(
{y : uT (y − x) ≥ 0}

)
.

In other words, the halfspace depth of x is the infimum of probability of all
closed halfspaces whose border includes x. The halfspace depth is well defined for
all x ∈ Rp. The empirical (sample version) halfspace depth HDn(x) defined on a
random sample X1, . . . , Xn of the distribution P is defined as a halfspace depth for
the empirical probability measure Pn.

This definition is very intuitive and easily interpretable. Moreover, there are
many nice properties of the halfspace depth which made this depth popular and
widely used. Let us recall some of them.

1. Depth is affine invariant function.

2. In many situations (e. g. for absolutely continuous distributions) there is a
unique point with highest depth, the deepest point.

3. Considering a ray starting at the deepest point, the depth of points along the
ray is nonincreasing as the distance from the deepest point increases.

4. The depth function HD is vanishing at infinity.

5. The set {x : HD(x) ≥ d} of points whose depth is higher than a given value
d is convex for any d (convexity of central regions, quasi-concavity of depth
function).

6. The empirical halfspace depth HDn(x) converges almost surely to HD(x) as
n → ∞ for all x ∈ Rp (strong consistency).

The properties 1 – 4 are called key properties in [10]. Zuo and Serfling [10]
also consider broad classes of depth function and study the possession of these key
properties.

Some of these properties may be not desirable for general distributions. For
example, when the underlying distribution is not symmetric, then a natural unique
candidate for the deepest point needs not to exist. If the level sets of density function
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f (i. e., sets defined as {x : f(x) ≥ a} for all a > 0) does not form convex or star-
shaped sets, then the properties 3 and 5 may be superfluous.

The convexity of central regions may be considered as a disadvantage of halfspace
depth (and of other depth functions) when it is applied to considerably non-convex
datasets. Therefore constructions of more general central regions were proposed.
Beside the well known level sets of the probability density function, DasGupta et al.
[1] considered a general family of star-shaped sets. “Best” shape of central regions
is proposed and it is then inflated (deflated) in order to obtain the central region of
given probability. The idea behind this approach is substantially different from the
halfspace or simplicial depths.

But even for absolutely continuous distributions with convex support, like the
bivariate exponential distribution or the bivariate [0, 1]2 uniform distribution, some
disadvantages of the halfspace depth may be disclosed; see Section 6. It is the
main motivation for us to propose a larger class of depth functions derived from the
halfspace depth.

3. WEIGHTED HALFSPACE DEPTH

In this section we propose depth function derived from the halfspace depth function
which, in contrary to the halfspace depth, allows the central regions to be more
general than convex. The main idea is to use weights (weighted probability) in the
halfspace rather than the probability of halfspace.

More precisely, let us denote by x the point for which the depth is computed
and by H ⊂ Rp the halfspace of interest. Each point y ∈ H is assigned a weight
w(y) which depends on a position of y with respect to x and then the weighted
probability pH =

∫
H

w(Y ) dP of the halfspace H is computed. The same weights are
used to the opposite halfspace R

p \ H and pRp\H is calculated. The ratio of these
two values is used for definition of the weighted depth (in contrary to the halfspace
depth where the opposite halfspace need not to be considered). Let us formulate
the formal definitions.

Notation of weight functions. In what follows we denote by w+ : Rp → [0,∞)
any measurable weight function which is bounded and such that

w+(x) = w+(x1, . . . , xp) = 0 if xp < 0,

and denote its “counterweight function” as

w−(x) = w−(x1, . . . , xp) = w+(x1, . . . ,−xp).

Definition 3.1. (Depth function) Let X be a random vector and P its prob-
ability distribution. The (population) weighted depth of a point x is defined as

D(x) := inf
A∈Op

EP w+

(
A(X − x)

)

EP w−

(
A(X − x)

) , (1)

where w+ is the weight function, Op denotes the space of all orthogonal p×p matrices,
and the term 0/0 is defined to be 1.
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Notation remark: Sometimes it is useful to emphasize the underlying distribu-
tion or the random vector in the depth function. We adopt the notation DP(x) =
DX (x) = D(x) where P is the underlying probability measure, and X is a random
vector with distribution P.

Remark 3.2. In Definition 3.1 the orthogonal transformations are used to allow full
generality of the weight function. For smaller class of symmetric weight functions,
i. e., if

w+(x1, . . . , xk, . . . , xp) = w+(x1, . . . ,−xk, . . . , xp), k = 1, . . . , p − 1

holds, it is possible to consider only rotations instead of all orthogonal transforma-
tions. In particular, the role of the orthogonal transformation is the same as the
role of rotations (directions u) of the halfspace in Definition 2.1. In other words,
instead of rotating the weight function w+ the random vector X is orthogonally
transformed (“rotated to a direction”).

Theorem 3.3. For any p-dimensional random vector X and any x ∈ R
p it holds

DX (x) ≤ 1.

P r o o f . It is not difficult to see that w−(X) = w+(I−X) and w+(X) = w−(I−X),
where I− = diagp(1, 1, . . . ,−1) is a p × p diagonal orthogonal matrix. Since {I−A :
A ∈ Op} = Op it follows

D(x) = inf
A∈Op

Ew+(A(X − x))

Ew−(A(X − x))
= inf

A∈Op

Ew−(A(X − x))

Ew+(A(X − x))
(2)

and since clearly

min

{
Ew+(Y )

E w−(Y )
,
Ew−(Y )

Ew+(Y )

}
≤ 1

the proof is completed. �

The connection between the depth function of Definition 3.1 and the halfspace
depth function need not be clear at this moment. In the following discussion it
is shown that the depth function D is essentially a generalisation of the halfspace
depth.

Definition 3.4. (Depth function II) Define a depth function

D̃(x) := inf
A∈Op

Ew+(A(X − x))

Ew+(A(X − x)) + Ew−(A(X − x))
, (3)

for a weight function w+; the ratio 0/(0 + 0) is now defined as 1/2.

The depth functions D and D̃ are equivalent in the sense of the multivariate
ordering:
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Theorem 3.5. For any weight function w+ and for all x, x1, x2 ∈ Rp the equiva-
lence

D(x1) ≤ D(x2) ⇐⇒ D̃(x1) ≤ D̃(x2) (4)

holds. Moreover,

D̃(x) ≤ 1

2
, (5)

and

D(x) =
D̃(x)

1 − D̃(x)
. (6)

P r o o f . Following similar argument as in proof of Theorem 3.3 it holds

D̃(x) = inf
A∈Op

EP w+

(
A(X − x)

)

EP w+

(
A(X − x)

)
+ EP w−

(
A(X − x)

)

= inf
A∈Op

EP w−

(
A(X − x)

)

EP w+

(
A(X − x)

)
+ EP w−

(
A(X − x)

) .

The inequality (5) follows from the obvious fact that

min

{
Ew+(Y )

Ew+(Y ) + Ew−(Y )
,

Ew−(Y )

Ew+(Y ) + Ew−(Y )

}
≤ 1/2.

Denote for fixed orthogonal matrix A

v+ = Ew+

(
A(X − x)

)
and v− = Ew−

(
A(X − x)

)
.

If v− > 0 then

v+

v−
=

v+

v− + v+

(
v−

v− + v+

)−1

=
v+

v− + v+

(
1 − v+

v− + v+

)−1

. (7)

If v− = 0 and v+ > 0 then v− and v+ in (7) may be interchanged (see arguments
for (5) and (2)).

If both v− = v+ = 0 then the 0/0 ratios are defined as

v+

v−
= 1,

v+

v− + v+
=

1

2
⇒ v+

v−
=

v+

v− + v+

(
1 − v+

v− + v+

)−1

.

Equation(6) now follows.
Since the function x 7→ x/(1−x) is increasing in x for x ∈ [0, 1/2], the equivalence

(4) follows. �

Remark 3.6. The previous theorem shows that our definition is in some sense a di-
rect generalisation of the halfspace depth if the underlying distribution is absolutely
continuous. Indeed, the halfspace depth HD(x) is equal to D̃(x) for w+(y) ≡ 1 (the
denominator is 1 for any absolutely continuous distribution).



130 D. HLUBINKA, L. KOTÍK AND O. VENCÁLEK

In the case of non-continuous distribution, it holds HD(x) ≥ D̃(x) for all x

and the inequality may be strict at some points. Indeed, consider p ∈ (0, 1) and
a bivariate distribution given by (1 − p)Unif [0,1]2 + pδ(1,1), i. e., the mixture of
the uniform distribution on [0, 1]2 and a point mass at (1, 1). Then, obviously,

HD(1, 1) = p > p/(1 + p) = D̃(1, 1).

Obviously, the empirical measure Pn is used for the definition of the sample
weighted depth. In what follows we shall call D(x) simply the depth of x unless we
need to distinguish more depth functions.

Remark 3.7. Usual choice of weight function is spherically symmetric about xp-
axis. It means that there exists function h : [0, +∞) × R → R such that

w+(x1, . . . , xp) = h(x2
1 + . . . + x2

p−1, xp).

Namely, it holds w+(x) = w+(x1, . . . , xp−1, xp) = w+(−x1, . . . ,−xp−1, xp) = w−(−x)
in this case.

Example 3.8. The cylinder weight function is for a chosen h > 0 defined as

w+(x1, . . . , xp) =

{
1 if

∑p−1
i=1 x2

i < h2, xp > 0,

0 elsewhere.
(8)

In particular, for R2 the definition has the following meaning. Given fixed point x

and a direction s (unit vector in R2), we consider a line l = x + ts, t ∈ R for which
a band with width 2h

B(x, s) = {y ∈ R
2 : d(y, l) < h}

is defined (d denotes the Euclidean distance). The band B(x, s) is divided by a seg-
ment orthogonal to s and containing x into two half-bands B+(x, s) and B−(x, s).
Denoting p+(x, s) and p−(x, s) the probabilities of B+(x, s) and B−(x, s) respec-
tively, the (band) weighted depth becomes

D(x) = inf
‖s‖=1

p+(x, s)

p−(x, s)
.

The sample version is calculated from the number of observations in B+(x, s) and
B−(x, s).

Example 3.9. The cone weight function is defined for an angle α ∈ (0, π/2] as

w+(x1, . . . , xp) =

{
1 if ∠

(
(x1, . . . , xp), (0, . . . , 0, xp)

)
≤ α

0 elsewhere,

where ∠(x, y) denotes the angle between two vectors. Clearly, for a continuous
distribution and α = π/2 it holds HD = D.

In some sense the cone weight function is a modification of cylinder weight func-
tion. To see that, it is sufficient to use an appropriate function h(xp) instead of a
constant h in definition (8).
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See Figure 2 for an example of cone weight function and cylinder weight function
in R

2.
In both example above, the probability of a halfspace was replaced by the prob-

ability of a subset of halfspace. Not only this means a direct generalisation of half-
space depth (replacing halfspace by another subset of Rp), but even more flexibility
is allowed by weighted depth.

Example 3.10. The normal weight function is defined as

w+(x1, . . . , xp) =

{
φΣ(x1, . . . , xp−1) if xp > 0

0 elsewhere,

where φΣ is the density of p−1 dimensional normal distribution with zero mean and
covariance matrix Σ. It is, however, also possible to generalise the weight function
in the way that the matrix Σ may be a function of xp.

4. BASIC PROPERTIES OF WEIGHTED DEPTH

Let us summarise some facts about the depth function D.

Theorem 4.1. The depth function defined by (1) is translation invariant.

P r o o f . It follows directly from the definition that

DX+a(x + a) = DX (x).

�

Theorem 4.2. The depth function defined by (1) is rotation invariant.

P r o o f . Every rotation of a vector x ∈ Rp may be written as Bx, where B ∈ Op

is some orthogonal p × p matrix. Hence,

DBX (Bx) = inf
A∈Op

EP w+

(
A(BX − Bx)

)

EP w−

(
A(BX − Bx)

) = inf
A∈Op

EP w+

(
AB(X − x)

)

EP w−

(
AB(X − x)

)

= inf
A∈Op

EP w+

(
A(X − x)

)

EP w−

(
A(X − x)

) = DX(x)

since {AB : A ∈ Op} = Op as follows from the orthogonality of B. �

Recall that a support sp(P) of probability measure P is the smallest closed set
with probability 1, i. e.

sp(P) =
⋂

{F ∈ F : P(F ) = 1},

where F denotes class of all closed subsets. The closed convex support csp(P) of
probability measure P is defined as closed convex hull of the support sp(P).
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Theorem 4.3. Consider the weight function w+ such that w+(x) > 0 if x2
1 + · · ·+

x2
p−1 < k and w+(x) = 0 elsewhere (k may be infinite). Then DP(x) = 0 for any

x 6∈ csp(P).

P r o o f . Note that under the assumptions on w+ there for all x ∈ Rp exists an
orthogonal matrix Ax such that Ew+

(
Ax(X − x)

)
> 0. It is clear that DP(x) > 0

implies that for all orthogonal matrices A it holds

Ew+

(
A(X − x)

)
> 0 ⇒ Ew−

(
A(X − x)

)
= Ew+

(
I−A(X − x)

)
> 0. (9)

Consider x 6∈ csp(P) such that DP(x) > 0. It follows from (9) that x is “surrounded”
by points of sp(P) and therefore x is in the closed convex support of P. �

Example 4.4. On the other hand, a point x ∈ int
(
csp(P)

)
(here int(M) denotes

the interior of a set) need not to be of positive depth. This is a difference from the
halfspace depth, since

x ∈ int
(
csp(P)

)
⇒ HD(x) > 0.

Indeed, consider uniform distribution on a set

S = {(x, y) : x > 0, 1 < x2 + y2 < 2},

and a point a = (x0, y0) = (1/2, 0). Consider the depth function based on the band
weight function of Example 3.8, where r2 < 3/4. Indeed, for the direction s = (−1, 0)
it is clear that p+(a, s)/p−(a, s) = 0 (we follow the notation of Example 3.8) and
hence D

(
(1/2, 0)

)
= 0.

There is a particular interest in the so called deepest point, i. e., the point x̃ for
which

D(x̃) = max
x

D(x).

Definition (1) in general does not give a unique deepest point even in a situation of
an absolutely continuous distribution with connected support.

Example 4.5. Let us consider the uniform distribution on a set

S = {(x1, x2)
T : 0 ≤ x1 ≤ 10, 0 ≤ x2 ≤ 1} ∪ {(x1, x2) : 0 ≤ x1 ≤ 1, 0 ≤ x2 ≤ 10}.

Let us consider the band weight function (8) with a small h, say h = 1/20, and the
corresponding weighted depth function. From the shape of the support S it follows
that the only unique deepest point may lie on a line x1 = x2 only. It can be seen
that for any point x on the line x1 = x2 it holds D(x) ≤ 1/9.

Consider the point z = (5, 1/2). After some calculations we get D(z) > 1/9 ≥
D(x) for any x = (x1, x1)

T . Indeed, the lower estimate for D(z) may be obtained
considering a line l connecting z and the point (0, 10) together with a band b of the
width 2h around l and, on the other hand considering a line l′ connecting z and
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Figure 1: The deepest point need not to be unique, see Example 4.5.

the point (5, 0) with the same band around. See Figure 1 for a visualisation of this
example.

In this example there is no natural central point although the distribution is
symmetric about the line x2 = x1. There are two deepest points (symmetric about
the line of symmetry). The central regions are symmetric about the x1 = x2 axis as
well.

Remark 4.6. In general the function D does not fulfil two of the key properties (2,
3). The depth need not decrease along a ray from the deepest point (even if the
deepest point is unique). And the sets

{x : D(x) ≥ d}, d ∈ [0, 1] (10)

need not be convex and may be sometimes disconnected. This fact depends on the
underlying distribution; however, in some situations these properties are desirable.

In Example 4.5 there isn’t any “natural” deepest point. On the other hand, if
there is an intuitive deepest point, like the point of central symmetry, we would like
to prove that it is the deepest point for the weighted depth function. Indeed it is
the case for a suitable weight function.

Before we prove a symmetry of depth for a symmetric distribution, we recall two
notions of symmetry for random variable. We denote by B(Rp) class of all Borel sets
on Rp and by ‖ · ‖ the usual Euclidean norm.

Definition 4.7. Distribution of random vector X ∈ Rp is called centrally symmetric

if there exists a point s ∈ Rp such that

P[(X − s) ∈ B] = P[−(X − s) ∈ B] ∀ B ∈ B(Rp).

We shortly say that X is centrally symmetric about s.

Definition 4.8. Distribution of random vector X ∈ R
p is called angular symmetric

if there exists a point s ∈ Rp such that

P

[
X − s

‖X − s‖ ∈ B

]
= P

[
− X − s

‖X − s‖ ∈ B

]
∀ B ∈ B(Rp).

We shortly say that X is angular symmetric about s.
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Theorem 4.9. Let w+ be symmetric about xp-axis, i. e., w+(x1, . . . , xp−1, xp) =
w+(−x1, . . . ,−xp−1, xp) and suppose that the distribution of X is centrally sym-
metric about point θ. Then

D(x) ≤ D(θ) = 1, ∀x ∈ R
p.

P r o o f . It can be assumed that θ = 0 without loss of generality (translation
invariance of D). Since w+ is symmetric about xp-axis and w−(x) = w+(I−x) it
holds

w+(x) = w−(−x), ∀x ∈ R
p.

It follows that

Ew−(AX) = Ew+(−AX) = Ew+(AX)

for X centrally symmetric about 0 and arbitrary matrix A ∈ Op. Thus D(0) = 1.
The fact that D(x) ≤ 1, ∀x completes the proof. �

This result may be extended to angular symmetric distributions.

Theorem 4.10. Let w+ be symmetric about xp-axis and suppose that the distri-
bution of X is angular symmetric about point θ. If w+ is such that

w+(kx) = w+(x), ∀x ∈ R
p, k ≥ 0 (11)

then

D(x) ≤ D(θ) = 1, ∀x ∈ R
p.

P r o o f . It is an analogue to the proof of Theorem 4.9. Let θ = 0 without loss of
generality. Under the assumption (11) it holds

E w−(AX) = Ew+(−AX) = Ew+(−AX/‖AX‖)
= Ew+(AX/‖AX‖) = Ew+(AX)

∀A ∈ Op, hence

D(0) = inf
A∈Op

Ew+(AX)

E w−(AX)
= 1.

�

Remark 4.11. In Theorem 4.10 it is sufficient to define the weight function w+ on
the unit halfsphere

Sp,+ = {x : ‖x‖ = 1, xp ≥ 0}

and use w+(x) = w+(x/‖x‖) to ensure (11). Obviously the cylinder (band) depth
does not satisfy the assumption of Theorem 4.10. On the other hand the assumption
of the theorem is satisfied by the cone weight function defined in Example 3.9.
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Example 4.12. Let X be a two dimensional random vector with normal distribu-
tion N2(0, I2). Suppose we have a band weight function

w+(x1, x2) =

{
1, if − h < x1 < h, x2 > 0

0, otherwise

for given h > 0. We use the same notation as in Example 3.8, hence

D(x) = inf
‖s‖=1

p+(x, s)

p−(x, s)
. (12)

First we show that for an arbitrary point x it holds

D(x) = inf
‖s‖=1

= min

{
p+(x, s0)

p−(x, s0)
,
p−(x, s0)

p+(x, s0)

}

for s0 such that 0 ∈ {x + ts0, t ∈ R}. Without loss of generality we can assume
that x = (0, x2)

T (the distribution is symmetric about 0 and also about any line
containing 0). For such a point x let s = (0, 1)T . One has

p+(x, (0, 1)T ) = P(X2 > x2, −h < X1 < h) = (1 − Φ(x2))P(−h < X1 < h),

p−(x, (0, 1)T ) = P(X2 < x2, −h < X1 < h) = Φ(x2)P(−h < X1 < h),

where Φ is the distribution function of N(0, 1). For any other direction u 6= s

and bands B(x, u) there exists uniquely determined rotation A ∈ O2 such that
Au = (0, 1)T and AX = X ′ ∼ N2(0, I2). For x = (0, x2)

T it holds Ax = x′ where
x2 > x′

2. It is easy to show that

p+(x, u) = p+(x′, (0, 1)T ) = P(X ′
2 ≥ x′

2)P(x′
1 − h < X ′

1 < x′
1 + h)

= (1 − Φ(x′
2))P(x′

1 − h < X ′
1 < x′

1 + h),

p−(x, u) = Φ(x′
2)P(x′

1 − h < X ′
1 < x′

1 + h).

Since Φ(x2) > Φ(x′
2) it follows

p+(x, u)

p−(x, u)
=

1 − Φ(x′
2)

Φ(x′
2)

>
1 − Φ(x2)

Φ(x2)
=

p+(x, (0, 1)T )

p−(x, (0, 1)T )
.

Hence

D(x) =
1 − Φ(x2)

Φ(x2)
.

Since both the depth function and the distribution are invariant with respect to
rotation, it follows that for any y ∈ R2

D(y) = D
(
(0, ‖y‖)T

)
=

1 − Φ(‖y‖)
Φ(‖y‖) .

The depth does not depend on the value of h and it is equal to the halfspace depth.
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5. CONSISTENCY OF THE DEPTH FUNCTION

We shall prove in this section a strong pointwise consistency of the depth function
under relatively mild conditions on the weight function. Note that the consistency
of the halfspace depth is a direct corollary to our result (see Remark 3.6).

In what follows we consider an absolutely continuous Borel probability measure
P on Rp. Let us denote

∠(u, v) the angle of vectors u and v,

and

Aϕ ⊂ Op set of all rotation matrices A such that ∠(u,Au) ≤ ϕ for all u ∈ R
p.

Note that A0 = {Ip}. Finally, let us denote by Ns any matrix representing an
orthogonal rotation such that Nss = (0T , 1)T , N(0T ,1)T := Ip. Such a matrix need
not to be defined uniquely, however, for any two different N1

s, N2
s it holds

∠(N1
su,N1

sv) = ∠(N2
su,N2

sv) = ∠(u, v) for all u, v ∈ R
p.

Definition 5.1. (Regularity of weight function) We say that weight function
w+ satisfies regularity conditions if

(A) w+(x1, . . . , xp−1, xp) is spherically symmetric about xp-axis, i. e. w+ is a func-
tion of (x2

1 + · · · + x2
p−1, xp). In other words, w+ is a function of the distance

from xp axis and values on xp axis.

(B) w+ is measurable and bounded.

(C) For arbitrary point x it holds that

lim
ϕ→0+

sup
A∈Aϕ

{
w+

(
ANs(X − x)

)}
= w+

(
Ns(X − x)

)
P-a.s.

lim
ϕ→0+

inf
A∈Aϕ

{
w+

(
ANs(X − x)

)}
= w+

(
Ns(X − x)

)
P-a.s.

for every direction s, ‖s‖ = 1. In other words, the sup, resp. inf function over
all orthogonal rotations is P-a.s. continuous from right in 0 with respect to a
rotation angle.

Let us first denote two important subsets of points. Define

H1 = {x : inf
A∈Op

Ew+(A(X − x)) > 0},

H2 = {x : ∃δ > 0 ∀ε > 0 ∃Aε ∈ Op : Ew+(Aε(X − x)) < ε

and E w−(Aε(X − x)) > δ}.
Remark 5.2. It is easy to see that the set H1 contains the interior of support sp(P),
i. e. points whose open neighbourhood is contained in the support of P. In the case
of absolutely continuous distribution P(H1) = 1. On the other hand the set H2

represents points with zero depth and, in particular, for the complement of support
∁csp(P) it holds ∁csp(P) ⊂ H2 under very weak conditions on the weight function
w+. It is easy to see that if x ∈ H1 then DP(x) > 0 and if x ∈ H2 then DP(x) = 0.
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Theorem 5.3. Let Pn be an empirical measure defined by a random sample X1, . . . ,
Xn from distribution P. Let the weight function w+ satisfies the regularity condi-
tions of Definition 5.1. Then for any x ∈ H = H1 ∪H2 it holds

DPn
(x) → DP(x) P-almost surely. (13)

P r o o f . For our purposes we will use standard conventions from measure theory
for the extended real line [−∞, +∞], e. g. 0.(±∞) = 0, +∞ + ∞ = +∞, etc. and
we define logarithm in zero: log 0 := limx→0+ log x = −∞.

The first step is to show that the class of functions W := {y 7→ w+(A(y − x)) :
A ∈ Op} satisfies the Uniform law of large numbers. It means to prove that

sup
A∈Op

∣∣∣
1

n

n∑

i=1

w+(A(Xi − x)) − EP w+(A(X − x))
∣∣∣ −→ 0 P-a.s. (14)

To this end it is sufficient to prove that

H1,B(ε,W , P) < +∞, for all ε > 0,

where H1,B(ε,W , P) denotes entropy with ε-bracketing for L1(P)-metric see [9,
Lemma 3.1].

For a fixed vector s and a given angle ϕ we define functions

WU
s,ϕ(z) = sup{w+(ANs(z − x)) : A ∈ Aϕ},

WL
s,ϕ(z) = inf{w+(ANs(z − x)) : A ∈ Aϕ}.

Since A0 = {Ip} it holds WL
s,0(z) = WU

s,0(z) = w+(Ns(z−x)). Further the inequal-
ity

WL
s,ϕ(z) ≤ w+(Na(z − x)) ≤ WU

s,ϕ(z) (15)

holds for arbitrary z and direction a such that ∠(a, s) ≤ ϕ.
For arbitrary direction s we define function

Gs(ϕ) = EPWU
s,ϕ(X).

This definition is correct, because for a measurable function w+, the function WU
s,ϕ(z)

is (universally) measurable; see Lemma 5.5 and its proof.
We will show that Gs is continuous from right in 0. Since w+ is bounded, one

has that Gs(ϕ) < +∞ for all ϕ ∈ [0, π]. Measurability and integrability together
with condition (C) directly imply continuity from right of Gs in 0 using Lebesgue’s
dominated convergence theorem.

It follows that for all ε > 0 there exists ϕ0 such that for all ϕ ∈ [0, ϕ0) holds

ε > |Gs(ϕ) − Gs(0)| =
∣∣EP

[
WU

s,ϕ(X) − w+(Ns(X − x))
]∣∣

= EP

∣∣WU
s,ϕ(X) − w+(Ns(X − x))

∣∣.

Since inequality (15) holds, the last equation is correct. An analogous inequality
holds for WL

s,ϕ.
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Hence, for arbitrary s, ‖s‖ = 1, and for every ε > 0 there exists ϕs > 0 such
that

EP

∣∣WU
s,ϕs

(X) − WL
s,ϕs

(X)
∣∣ < ε. (16)

Now, for arbitrary ε > 0, we construct ε-bracketing for W . Let’s consider the
metric space (Sp, ρ), where Sp = {s : ‖s‖ = 1} and ρ is the Euclidean distance
metric. Space (Sp, ρ) is closed and bounded, hence it is compact. For arbitrary
s ∈ S an angle ϕs which satisfies (16) may be found. Denote by C(s, ϕs) a set of
all u ∈ Sp such that ∠(u, s) < ϕs. C(s, ϕs) are open sets in the metric space (Sp, ρ)
and form an open cover of Sp. Since Sp is compact it follows that for any open cover
there exists a finite subcover. In other words there exists a finite subset U of Sp such
that

Sp =
⋃

u∈U

C(u, ϕu).

Every function from W is determined by a direction s ∈ Sp in the sense that for an
arbitrary function v ∈ W there exists s ∈ Sp such that v(y) = w+(Ns(y − x)) and
obviously there exists u ∈ U such that s ∈ C(u, ϕu). Hence WU

u,ϕu

and WL
u,ϕu

are
the corresponding bracketing functions which satisfy (15) and (16).

Finally, we obtain

H1,B(ε,W , P) ≤ card(U) < +∞.

and thus (14) holds.

Now we can come up to the proof of consistency of depth DPn
(x). It is a conse-

quence of (14). Let us use the notation

D̂P(x,A) =
EP w+(A(X − x))

EP w−(A(X − x))
,

where the term 0/0 is defined again as 1.
First the case x ∈ H1 is treated. It holds

0 < DP(x) ≤ D̂P(x,A) ≤ 1/DP(x) < +∞, ∀A ∈ Op.

It follows from Lemma 5.7 below that

| logDPn
(x) − log DP(x)| = | inf

A∈Op

log D̂Pn
(x,A) − inf

A∈Op

log D̂P(x,A)|

≤ sup
A∈Op

| log D̂Pn
(x,A) − log D̂P(x,A)|

≤ sup
A∈Op

(∣∣∣ log
1

n

n∑

i=1

w+(A(X i − x)) − log EP w+(A(X − x))
∣∣∣

+
∣∣∣log

1

n

n∑

i=1

w−(A(X i − x)) − log EP w−(A(X − x))
∣∣∣
)

≤ 2 sup
A∈Op

∣∣∣log
1

n

n∑

i=1

w+(A(Xi − x)) − log EP w+(A(X − x))
∣∣∣

(17)
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almost surely.
Since (14) holds it follows that also

sup
A∈Op

∣∣∣log
1

n

n∑

i=1

w+(A(Xi − x)) − log EP w+(A(X − x))
∣∣∣ −→ 0 P-a.s.

From (17) one has that

| log DPn
(x) − log DP(x)| −→ 0 P-a.s.

So eventually,

|DPn
(x) − DP(x)| −→ 0 P-a.s.

We shall now consider the case H2. For x ∈ H2 there exists δ > 0 such that for
any ε > 0 there exists Aε and for any η > 0 there exists nη such that for n ≥ nη

1

n

n∑

i=1

w+(Aε(Xi − x)) < EP w+(Aε(Xi − x)) + η < ε + η,

1

n

n∑

i=1

w−(Aε(Xi − x)) > EP w−(Aε(Xi − x)) − η > δ − η,

(18)

holds P=a.s. (see the definition of H2 and (14)). It follows that for n ≥ nη

|DPn
(x) − DP(x)| =

∣∣∣∣ inf
A∈Op

1
n

∑n

i=1 w+(A(X i − x))
1
n

∑n

i=1 w−(A(X i − x))
− 0

∣∣∣∣

≤
1
n

∑n

i=1 w+(Aε(Xi − x))
1
n

∑n

i=1 w−(Aε(X i − x))

<
ε + η

δ − η
,

and since ε and η may be chosen arbitrary small the proof is completed.
�

It is clear that the most restrictive regularity condition is (C). In the next theorem
a simple sufficient condition for (C) is stated.

Corolary 5.4. Let us have X1, . . . , Xn a p-dimensional sample from absolutely
continuous probability distribution P and suppose spherically symmetric weight
function w+ about xp axis (see Remark 3.7). Further assume that w+ is contin-
uous on some connected set M ⊆ Rp−1 × [0, +∞) of positive Lebesgue measure and
that w+ is equal to zero on Rp \M. Then for any x ∈ H = H1 ∪H2 it holds

DPn
(x) −→ DP(x) P-a.s.

P r o o f . We need to check the validity of regularity conditions.
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Condition (C) for supremum can be equivalently expressed in the form:

lim
ϕ→0+

sup
A∈Aϕ

{
w+

(
ANs(y − x)

)
f(y)

}
= w+

(
Ns(y − x)

)
f(y)

for almost all y and for every direction s, ‖s‖ = 1. f denotes density of probability
distribution P. In the following we will use this form of condition (C) and for fixed s

we will work with shifted and rotated random vector Ns(X −x) instead of random
vector X. Its density we denote by fs.

If y /∈ clo(M) then Rp \ clo(M) is open set and thus there exists ϕ0 > 0 such
that for all 0 ≤ ϕ < ϕ0 it holds that w+(By)fs(y) = 0, where B ∈ Op is arbitrary
orthogonal rotation about angle ϕ.

If y ∈ int(M) then, since int(M) is open and w+ is there continuous, one has that
for every ε > 0 there exists δ > 0 such that B(y, δ) = {u : ‖u − y‖ < δ} ⊆ int(M)
and inequality |w+(u) − w+(y)| < ε holds for every u ∈ B(y, δ). For every such
δ there exists angle ϕ0 > 0 such that for arbitrary rotation B ∈ Op about angle
smaller than ϕ0 one has By ∈ B(y, δ) and thus |w+(By) − w+(y)| < ε. For any
angle ξ, 0 ≤ ξ < ϕ0, we define set

Uξ(y) = {u : ‖u‖ = ‖y‖, ∠(y, u) ≤ ξ} ⊂ B(y, δ).

Uξ(y) is compact and w+ is continuous on this set. Thus

sup
A∈Aξ

{
w+(Ay)fs(y)

}
= fs(y)max

{
w+(u) : u ∈ Uξ(y)

}
.

Therefor for all ε > 0 there exists angle ϕ0 > 0 such that for all ξ, 0 ≤ ξ < ϕ0,
inequality

∣∣ sup
A∈Aξ

{w+(Ay)fs(y)} − w+(y)fs(y)
∣∣ = fs(y)

∣∣ max
u∈Uξ(y)

w+(u) − w+(y)
∣∣ < ε

holds for all y ∈ Rp \ (∂M∪K), where K = {y : fs(y) = +∞}. Whence condition
(C) holds, because Lebesgue measure of (∂M∪K) is equal to zero.

The regularity of infimum function is proved analogically. �

There is a natural question what can be said about the points outside H and about
the set H itself. First of all, let us show two counterexamples to the consistency of
sample depth (see Figure 2).

We consider a uniform distribution on a “hourglass” set, and a uniform distri-
bution on “four tiles”. In both cases the distributions are symmetric around a
naturally defined central point x and it is exactly the point x where the problem
arises. For any sample size n there exists a.s. an orthogonal transformation A such
that Enw+

(
A(X − x)

)
= 0 while Enw−

(
A(X − x)

)
> 0. In both cases the central

point x is the only point for which the sample depth is not consistent. Both points
are also points of discontinuity of the depth function. Indeed, the theoretical depth
D(x) = 1 as follows from the symmetry of distribution. On the other hand there
exists sequence xn → x such that D(xn) = 0 for all n.
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w+

w−

x

x

w+
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Figure 2: The sample depth need not to be consistent.

The nature of the problem lies in the limit of 0/0 type. Assume without loosing
the generality that the central point x = 0. In both cases there exists an orthogonal
transformation A0 and a sequence of orthogonal transformations An such that

Ew+

(
A0X

)
= 0, Ew−

(
A0X

)
= 0

Ew+

(
AnX

)
> 0, Ew−

(
AnX

)
> 0 ∀n

Ew+

(
AnX

)
→ 0, Ew−

(
AnX

)
→ 0 as n → ∞

(19)

There exist technical assumptions on the support of probability measure P and on
the weight function (beside the regularity conditions of Definition 5.1) such that (19)
does not hold for any point x ∈ Rp. Obviously, the critical points are in the interior
of convex support and simultaneously in the complement of interior of support itself.

Therefore, if sp(P) = csp(P) then H = Rp and the strong consistency holds for any
point. An example may be normal distribution, bivariate exponential distribution,
and many others.

As we have mentioned above, there are technical conditions on the support of
probability measure P and on the weight function w+ such that the consistency
hold for y ∈ Rp. An example of such sufficient conditions may be

• There exist r > 0 and w > 0 such that w+(y) ≥ w if y2
1 + · · · + y2

p−1 ≤ r.

• There exists a compact set C such that csp(P) \ sp(P) ⊂ C.

• The interior of support sp(P) is a connected set.

These conditions are neither necessary conditions, nor the only possible sufficient
conditions. In general, the set of points for which the consistency does not hold is,
however, small in the sense of probability. Indeed, for any absolutely continuous
distribution P it holds

P{y : DPn
(y) → DP(y), a.s.} = 1.
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The non-consistent points are, as may be clear from the counterexamples, special
cases and may be considered as rather “pathological”. In particular, consider the
“hourglass” distribution together with the band weight function (rather than with
the cone weight function) then the consistency of depth holds for the central point
x as well as for any other points y ∈ R2. Hence, it is a combination of a specific
weight function and a specific distribution which causes the trouble at x.

The following two technical lemmas are necessary for the proof of consistency.

Lemma 5.5. Let the weight function w+ satisfy regularity conditions and consider
fixed s, ‖s‖ = 1 and ϕ ∈ [0, π]. Then the function

z 7→ sup{w+(ANs(z − x)) : A ∈ Aϕ}

is universally measurable.

P r o o f . The function w+ may be considered as a function of a distance (d = ‖x‖)
and the “direction” s = x/‖x‖ where s ∈ Sp, the unit sphere. We use the metric
ρ(s, z) = ∠(s, z) for s, z ∈ Sp.

The problem is therefore equivalent to a problem of measurability of a function

g(d, s) = sup{f(d, z) : τ(z, s) ≤ e}

if f : [0, +∞) × M → [0, +∞) is a measurable function, where (M, τ) is a separable
metric space. Denote Ba = {(d, z) : f(d, z) > a} and note that Ba is a Borel set
for any a due to the measurability of f . Denote Ca := {(d, s) : g(d, s) > a}. It is
clear that for any d

Ca
d = Ue(B

a
d),

where Md = {s : (d, s) ∈ M} denotes the d-section of a set M and Ue(N) denotes
the e-neighbourhood of a set N ⊂ M. The set Ca is therefore a projection of a Borel
set

Da,e = {(d, s, z) ∈ [0, +∞) × M × M : (d, z) ∈ Ba, τ(s, z) ≤ e}
into the first two coordinates.

Since the projection of a Borel set is an analytic and hence a universally measur-
able set it follows that g(y, x) is universally measurable function. �

Remark 5.6. If a function g is universally measurable then for any finite Borel
measure µ on [0, +∞) × R (in particular for any probability measure) there exist a
pair of Borel functions g1, g2 such that g1(y, x) ≤ g(y, x) ≤ g2(y, x) and g2 = g1

µ-almost surely. Hence the Lebesgue integral of universally measurable function is
well defined.

Lemma 5.7. Consider two bounded functions f, g : M → R. Then

sup{|f(x) − g(x)| : x ∈ M} ≥ | inf{f(x) : x ∈ M} − inf{g(x) : x ∈ M}|.
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P r o o f . If inf f = inf g then it follows immediately because sup |f − g| ≥ 0.
If inf f > inf g then there exists ε0 > 0 such that for all ε, 0 < ε < ε0, exists

xg ∈ M which satisfies

inf g ≤ g(xg) < inf g + ε < inf f ≤ f(xg).

Therefor

sup |f − g| ≥ |f(xg) − g(xg)| ≥ | inf f − g(xg)| > | inf f − inf g| − ε

for all ε, 0 < ε < ε0 and the proof of Lemma is completed. �

6. EXAMPLES

In this section, we first shortly discuss the computational aspects of sample depth
computation. Then few examples are given to show the main differences between
the halfspace depth and the weighted depth.

Since the weighted halfspace depth is defined for a broad class of weight functions,
a general fast algorithm for depth computing doesn’t exist. Also, the theoretical
depth DP(x) of point x under a general absolutely continuous distribution P cannot
be usually calculated exactly and some numerical approximation is needed. It is
caused by the fact that w+(Ax) can attain different values for every transformation
A ∈ Op, which means that possibly uncountable number of values must be consid-
ered. The symmetric weight functions (see Remark 3.2) allow to use only rotation
rather than all orthogonal transformations Op.

On the other hand, in some special cases the empirical depth may be computed
exactly. It is the case when the weight function is piecewise constant. The cone
weighted depth, the band weighted depth, the halfspace depth are, in particular,
examples of such depths. The set {∑n

i=1 w+A(X i − x),A ∈ Op} is finite for each
x in such a case.

Straightforward algorithm is used to compute the sample depth of a given point x.
It uses a predefined number of vectors in Rp−1 × [0, +∞) which represent halfspaces
in which we compute sample weighted probability. These vectors are normal vectors
of hyperplanes which determine appropriate halfspaces. For every such vector we
rotate our dataset so that normal vector goes to xp axis. Then we make, for rotated
dataset, two computations of sample weighted probability – for halfspace where
xp ≥ 0 and for halfspace where xp ≤ 0. Finally the depth is set to the smallest value
of portions of sample weighted probabilities in xp ≥ 0 and xp ≤ 0 halfspaces. For
sample size n the computation of weighted probability in given halfspace takes O(n)
steps. There are 2k halfspaces, hence computation of depth of given point takes
O(2kn) steps. If one wants to compute the depth of all points in dataset it takes
O(2kn2) steps. Note that for two dimensional dataset setting the choice 2k = 1000
halfspaces brings very precise answer.

We illustrate some differences between the weighted depth and the halfspace
depth. In the following four examples we use the band weight function of Example
3.8, where h = 0.25 or h = 0.5, respectively, is the “radius” of the band, i. e., the
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band width itself is 2h. Therefore we speak about band weighted depth or simply
about the band depth. Four bivariate distributions of random vector X = (X1, X2)

T

are considered:

• Normal Np(0, Ip)

• Uniform on [0, 1]× [0, 1]

• Exponential: X1 ∼ Exp(1), X2 ∼ Exp(1), where X1 and X2 are independent

• Mixture of two normal distributions, namely

N2

((
1
0

)
,

(
3 −0.9

√
3

−0.9
√

3 1

))
and N2

((
−2
2

)
,

(
2 0.8

√
2

0.8
√

2 1

))

We simulate 2500 points for each particular distribution and we compute sample
depth of these points. In next figures the areas of 25%, 50% and 75% of the deepest
points (points with the highest depth) are plotted. The rest of points (25% points
with the lowest depth) are marked by light grey. A triangle marks the sample deepest
point.

First let us consider two cases with natural centre - normal distribution and
uniform distribution on the unit square [0, 1] × [0, 1].
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Figure 3: Normal distribution N2(0, I2): areas of 25%, 50% and 75% of deepest
points.

In Figure 3 we can see that there is no big difference between the band weighted
depth and the halfspace depth for bivariate normal distribution N2(0, I2). Both
methods find point (−0.008, 0.019) as the sample deepest point, which is the “obser-
vation” (sample point) with the smallest distance (in the standard Euclidean metric)
from the theoretical centre (0, 0). Areas of the deepest points are similarly large.
The only remarkable difference is in the value of sample depth in sample deepest
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point (recall that this is the same point for both methods) which is 0.88 for the
band depth and 0.94 for the halfspace depth (theoretical depth of the deepest point
is equal to one in both cases, see Theorem 4.9; the halfspace depth is here defined as
the band depth with infinite bandwidth; see Remark 3.6 and Theorem 3.5). Differ-
ences between the sample band weighted depth and the sample halfspace depth for
fixed sample size become smaller as h increases. Note that in this case the sample
band depth for different values of h approach each other with increasing sample size
(see Example 4.12 and Theorem 5.4).
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Figure 4: Uniform distribution on [0, 1] × [0, 1]: areas of 25%, 50% and 75% of
deepest points.

In Figure 4 areas of deepest points for uniform distribution on square [0, 1]× [0, 1]
are displayed. The difference between band weighted depth (with h = 0.25, hence
the band width is 0.5) and halfspace depth is obvious. The main difference is in the
shape of areas of deepest points. Band depth keeps more faithfully the shape of the
support i. e. square whereas halfspace depth areas are rather going to be a circle. It
is not a surprise that for uniform distribution the areas are similarly large for both
methods and there is a common sample deepest point (0.499, 0.502), which is pretty
close to theoretical centre (0.5, 0.5). Again the sample depth of the sample deepest
point is remarkably smaller for band depth (0.91 for band depth, 0.96 for halfspace
depth).

We should note that differences are going to be smaller and smaller as h increases
for both normal and uniform distribution. In the case of uniform distribution there
is even no difference between theoretical band depth and halfspace depth if h is
greater than the diagonal of the square (h >

√
2).

In two previous examples we have considered centrally symmetric distributions.
For such a distribution there is naturally defined a unique centre. Now we will
consider some distributions that are not symmetric and the notion of centre may be
questionable.

In Figure 5 big differences between the band weighted depth and the halfspace
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Figure 5: Exponential distribution (X1 ∼ Exp(1), X2 ∼ Exp(1), X1 and X2 are
independent) : areas of 25%, 50% and 75% of deepest points.

depth for exponential distribution can be easily seen. Band depth areas are rather
triangular whereas the halfspace depth areas are rather oval. Note that band depth
areas correspond better to level sets of the density (level sets of this distribution
are rectangular isosceles triangles with vertex in (0, 0)). Also there is a remarkable
difference in position of sample deepest point which is (0.606, 0.610) for band depth
(depth = 0.68) and (0.763, 0.739) for halfspace depth (depth = 0.77). Both are close
to line y = x, but sample deepest point for band depth is closer to 0. Another
difference is that areas for the halfspace depth are about 30%-40% larger than for
band depth.

In Figure 6 a mixture of two bivariate normal distributions is plotted and a
remarkable difference between the halfspace depth and the band weighted depth is
shown. Band weighted depth areas again correspond more faithfully to level sets of
density. The shape of the areas for band depth give evidence that the distribution
is mixture of two other distributions. Areas for halfspace depth are about 25%
larger than for band depth. The difference in position of sample deepest point is
not surprising. In such a situation (we have two distinct natural centres) estimator
of the deepest point for band depth may be quite unstable, because in such cases
there need not exist unique deepest point. For band depth the sample deepest point
is (0.099, 0.538) (depth = 0.60), for halfspace depth it is (−0.534, 0.958) (depth =
0.70). Both these points are quite close to an abscissa that connects theoretical
centres of normal distributions (these centres are marked by light circle).

There is an interesting question about the choice of bandwidth h. In general
the smaller the bandwidth we use the more “local” behaviour of depth we obtain
and the more shattered (due to the discontinuity of weight function) are the sample
depth contours. It is desirable to take into account the variability of data and the
tradeoff between the “local” and the “global” features of the data which should be
emphasised.
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Figure 6: Mixture of two bivariate normal distributions: areas of 25%, 50% and 75%
of deepest points.

Concluding this section we should note that

• Main differences between the band and the halfspace depth are in the shape
of areas of deepest points.

• For considered nonsymmetric distributions the areas for the halfspace depth
were remarkably larger than for the band depth.

• For symmetric distribution both depths localise the centre of symmetry quite
well, for nonsymmetric distributions there are differences in localisation of the
deepest point (which may not be unique for the band depth).

• Sample depth of the sample deepest point is usually higher for the halfspace
depth.
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